联系方式
  • 公司: 深圳精成学社数学培训班
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  •  
  • 本站共被浏览过 11241 次
行业资讯

产品信息

更多...
价 格:面议

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

杨-米尔斯(Yang-Mills)存在性和质量缺口量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。

数学教育图书

数学教育图书

这些目标包括:

教授给所有学生的数字技巧。

教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。

早期的抽象代数概念教育(例如集合和函数)。

选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型。

选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例。

教授给希望以科学为职业的学生的高等数学。

数学教育的方式和变化的目标一致。

任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括:

经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。

死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。

习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。

问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。

新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。

历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。

这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。